Parameterisable linear actuator for adjusting air dampers and slide valves in ventilation and air-conditioning systems for building services installations

- For air dampers up to approx. $0.7 \mathrm{~m}^{2}$
- Actuating force 100 N
- Nominal voltage AC/DC 24 V
- Control: modulating DC 0 ... 10 V or variable
- Position feedback DC 2 ... 10 V or variable
- Length of stroke max. 100 mm , adjustable in 20 mm -steps
- Running time 3.5 s or variable

Technical data

Electrical data

Nominal voltage	AC $24 \mathrm{~V}, 50 / 60 \mathrm{~Hz} / \mathrm{DC} 24 \mathrm{~V}$		
Nominal voltage range	AC 19.2 ... $28.8 \mathrm{~V} / \mathrm{DC} 21.6$... 28.8 V		
Power consumption In operation At rest For wire sizing	13 W @ nominal torque 2 W 23 VA (I max. $20 \mathrm{~A} @ 5 \mathrm{~ms}$)		
Connection	Cable $1 \mathrm{~m}, 4 \times 0.75 \mathrm{~mm}^{2}$		
Functional data	Factory settings	Variable	Settings
Actuating force	Min. 100 N @ nominal voltage	25\%, 50\%, 75% reduced	
Control Control signal Y	DC $0 \ldots 10 \mathrm{~V}$, input impedance $100 \mathrm{k} \Omega$	Open-close, modulating (DC $0 \ldots 32 \mathrm{~V}$)	
Operating range	DC $2 \ldots 10 \mathrm{~V}$	$\begin{array}{lll}\text { Starting point } & \text { DC } 0.5 \ldots 30 \mathrm{~V} \\ \text { End point } & \text { DC } 2.5 \ldots 32 \mathrm{~V}\end{array}$	
Position feedback (Measuring voltage)	DC $2 \ldots 10 \mathrm{~V}$, max. 0.5 mA	Starting point $\mathrm{DC} 0.5 \ldots 8 \mathrm{~V}$ End point $\mathrm{DC} 2.5 \ldots 10 \mathrm{~V}$	
Position accuracy	$\pm 5 \%$		
Direction of stroke	Reversible with switch 0 / 1		
Direction of stroke at $\mathrm{Y}=0 \mathrm{~V}$	At switch position 1 1 resp. $0 \downarrow$	Electronically reversible	
Manual override	Gearing latch disengaged with pushbutton, can be locked		
Stroke adjustment	$20 \ldots 100 \mathrm{~mm}$, adjustable in 20 mm -steps, can be limited at both ends with mechanical end stops		
Stroke limiting	Min. 40 mm		
Running time	$3.5 \mathrm{~s} / 100 \mathrm{~mm}$ Manual triggering of the adaption by pressing the «Adaption» button or with the PC-Tool	$3.5 \ldots .15 \mathrm{~s} / 100 \mathrm{~mm}$	
Automatic adjustment of operating range and measuring signal U to match the mechanical stroke adjustment		Automatic adaptation / synchronisation whenever the supply voltage is switched on	
Override control	$\begin{array}{ll}\text { MAX (maximum position) } & =100 \% \\ \text { MIN (minimum position) } & =0 \% \\ \text { ZS (intermediate position, only AC) } & =50 \%\end{array}$	$\begin{aligned} & \text { MAX }=(\text { MIN }+32 \%) \ldots 100 \% \\ & \text { MIN }=0 \% \ldots(\text { MAX }-32 \%) \\ & Z S=\text { MIN } \ldots \text { MAX } \end{aligned}$	
Sound power level	52 dB (A)	With a running $3.5 \mathrm{~s}=52 \mathrm{~dB}(\mathrm{~A})$ time of $\quad 15 \mathrm{~s}=42 \mathrm{~dB}(\mathrm{~A})$	
Negative torque	$\leq 50 \%$ from nominal torque (Caution: can only be used with restrictions. Please contact your Belimo representative.)		

Safety

Protection class
III Safety extra-low voltage
Degree of protection
EMC
Certification
UL Class 2 Supply
IP54 in any mounting position
NEMA 2, UL Enclosure Type 2
CE according to 2004/108/EC
Certified to IEC/EN 60730-1 and IEC/EN 60730-2-14
cULus according to UL 60730-1A and UL 60730-2-14
and CAN/CSA E60730-1:02

Mode of operation	Type 1
Rated impulse voltage	0.8 kV

Control pollution degree 3

(continued)

Technical data
Safety
Ambient temperature
Non-operating temperature
Ambient humidity
Maintenance
Dimensions / Weight
Dimensions
Weight
Safety notes

Safety
$-30 \ldots+40^{\circ} \mathrm{C}$ (no restrictions)
$+40 \ldots+50^{\circ} \mathrm{C}$ (Caution: can only be used with restrictions. Please contact your Belimo representative.)
$-40 \ldots+80^{\circ} \mathrm{C}$
95% r.H., non-condensating
Maintenance-free
Dimensions / Weight

Dimensions	See «Dimensions» on page 7
Weight	Approx. 640 g

- The actuator is not allowed to be used outside the specified field of application, especially in aircraft or in any other airborne means of transport.
- It may only be installed by suitably trained personnel. Any legal regulations or regulations issued by authorities must be observed during assembly.
- The device may only be opened at the manufacturer's site. It does not contain any parts that can be replaced or repaired by the user.
- The cable must not be removed from the device.
- The rotary supports and coupling pieces available as accessories must always be used if lateral forces are likely. In addition, the actuator must not be tightly bolted to the application. It must remain movable via the rotary support (refer to «Assembly notes").
- If the linear actuator is exposed to severely contaminated atmosphere, appropriate precautions must be taken on the system side. Excessive deposits of dust, soot etc. can prevent the gear rack from being extended and retracted correctly.
- If not installed horizontally, the gear disengagement pushbutton may only be actuated when there is no pressure on the gear rod.
- To calculate the actuating force required for air dampers and slide valves, the specifications supplied by the damper manufacturers concerning the surface, cross section, design, installation site and the air flow conditions must be observed.
- If a rotary support and/or coupling piece is used, losses in the actuation force losses are to be expected.
- Adaptation is necessary when the system is commissioned or whenever the stroke limiting is adjusted (press the adaption pushbutton once).
- The device contains electrical and electronic components and is not allowed to be disposed of as household refuse. All locally valid regulations and requirements must be observed.

Product features

Mode of operation	The actuator is controlled with a standard modulating signal of DC $0 \ldots 10 \mathrm{~V}$ and moves to the position defined by the control signal. The measuring voltage U serves for the electrical display of the damper position $0 \ldots 100 \%$ and as slave control signal for other actuators.
Parameterisable actuators	The factory settings cover the most common applications. Input and output signals and other parameters can be altered with the BELIMO Service Tool, MFT-P.
Simple direct mounting	The actuator can be directly connected with the application using the enclosed screws. The head of the gear rod is connected to the moving part of the ventilation application individually on the mounting side or with the Z-KS2 coupling piece provided.
Manual override	Manual override with push-button possible (the gear is disengaged for as long as the button is pressed or remains locked).
Adjustable stroke	The stroke of the gear rack can be adjusted on both sides in increments of 20 mm by means of mechanical end stops. A minimum permissible stroke of 40 mm must be allowed for.
Home position	The actuator is overload-proof, requires no limit switches and automatically stops when the end stop is reached. The first time the supply voltage is switched on, i.e. during initial startup, the actuator carries out an adaptation. After pressing the "gear disengagement» pushbutton, the actuator moves to the home position at the end stop.

Pos. Direction of stroke	Home position
it $_{0}^{1} \quad \mathrm{Y}=0$	extended
$\mathrm{Y}=0$	retracted

The actuator then moves into the position defined by the control signal.

Adaption and synchronisation	During adaptation, the upper and lower spindle end stop is recorded and deposited in the actuator. Detection of the mechanical end stops enables a gentle approach to the end positions and thus protects the actuator mechanism.
	During synchronisation, the actuator moves to the home position for angle referencing. This ensures correct position regulation.

Accessories

	Description	Data sheet
Electrical accessories	PC-Tool MFT-P from version 3.3	T2-MFT-P
	Positioner SG..24	T2-SG..24
	Range controller SBG24	T2-SBG24
Mechanical accessories	Digital position indication ZAD24	T2-ZAD24
	Rotary support to compensate lateral forces Z-DS1	T2- Z-LH..A..
	Coupling piece Z-KS2	T2-Z-LH..A..
	End stop set Z-AS2	T2-Z-LH..A..

Electrical installation

Note

- Connect via safety isolation transformer.
- Parallel connection of other actuators possible. Note performance data for supply.

Note

When several actuators are connected in parallel, the maximum cable length must be divided by the number of actuators.

A = Actuator
C = Control unit
$\mathrm{L}_{1}=$ Belimo connecting cable, $1 \mathrm{~m}\left(4 \times 0.75 \mathrm{~mm}^{2}\right)$

Cable colours:
1 = black
$2=$ red
$3=$ white
5 = orange

A = Actuator
C = Control unit
$\mathbf{L}_{1}=$ Belimo connecting cable, $1 \mathrm{~m}\left(4 \times 0.75 \mathrm{~mm}^{2}\right)$
$L_{2}=$ Customer cable
$\mathrm{L}_{\text {tot }}=$ Maximum cable length

Cross section $\mathbf{L}_{\mathbf{2}}$ $\mathbf{1} / \sim$	Max. cable length $L_{\text {tot }}=L_{1}+L_{2}$		Example for DC
	AC	DC	
$0.75 \mathrm{~mm}^{2}$	$\leq 30 \mathrm{~m}$	$\leq 5 \mathrm{~m}$	$1 \mathrm{~m}\left(\mathrm{~L}_{1}\right)+4 \mathrm{~m}\left(\mathrm{~L}_{2}\right)$
$1.00 \mathrm{~mm}^{2}$	$\leq 40 \mathrm{~m}$	$\leq 8 \mathrm{~m}$	$1 \mathrm{~m}\left(\mathrm{~L}_{1}\right)+7 \mathrm{~m}\left(\mathrm{~L}_{2}\right)$
$1.50 \mathrm{~mm}^{2}$	$\leq 70 \mathrm{~m}$	$\leq 12 \mathrm{~m}$	$1 \mathrm{~m}\left(\mathrm{~L}_{1}\right)+11 \mathrm{~m}\left(\mathrm{~L}_{2}\right)$
$2.50 \mathrm{~mm}^{2}$	$\leq 100 \mathrm{~m}$	$\leq 20 \mathrm{~m}$	$1 \mathrm{~m}\left(\mathrm{~L}_{1}\right)+19 \mathrm{~m}\left(\mathrm{~L}_{2}\right)$

Note

There are no special restrictions on installation if the supply and data cable are routed separately.

Override control with AC 24 V
with relay contacts

Remote control 0 ... 100\%

Master/Slave control (position-dependent)

Position indication

Override control with AC 24 V
with rotary control switch

Minimum limit

Control with 4 ... 20 mA via external resistance

$(-)$ $4 . . .20 \mathrm{~mA}-$

U DC $2 \ldots 10 \mathrm{~V}$

The 500Ω resistor converts the 4 ... 20 mA current signal into a voltage signal DC 2 ... 10 V

Functional check

Procedure

- Apply 24 V to connection 1 and 2
- Disconnect connection 3:
- For direction of stroke 0

Actuator travels in the direction of \downarrow

- For direction of stroke 1 .

Actuator travels in the direction of \uparrow

- Short circuit connections 2 and 3 :
- Actuator runs in the opposite direction

Functions for actuators with specific parameters

Override control and limiting with AC 24 V
with relay contacts

${ }^{1)}$ Caution! This function is only guaranteed if the start point of the operating range is defined as min. 0.6 V .
Open-close control

Assembly notes

Application without transverse forces

Application with transverse forces

Caution

If a rotary support and/or coupling piece is used, losses in the actuation force losses are to be expected.

The coupling piece with the internal thread (Z-KS2) is connected to the head of the gear rod. The rotary support (Z-DS1) is screwed to the ventilation application. Afterwards, the linear actuator is screwed to the previously mounted rotary support with the enclosed screw. Afterwards, the coupling piece, which is mounted to the head of the gear rod, is attached to the moving part of the ventilation application (e.g. damper or slide valve).
The transverse forces can be compensated for to a certain limit with the rotary support and/or coupling piece. The maximum permissible swivel angle of the rotary support and coupling piece is $10^{\circ} \Varangle$, laterally and upwards.

Operating controls and indicators

(1) Direction of stroke switch

Switching over: Direction of stroke changes
(2) Push-button and green LED display

Off: \quad No voltage supply or fault
On: In operation
Press button: Switches on stroke adaption, followed by standard operation
(3) Push-button and yellow LED display

Off: Standard operation
On: Adaptation or synchronising process active
Press button: No function
(4) Gear disengagement switch

Press button: Gear disengaged, motor stops, manual override possible
Release button: Gear engaged, synchronisation starts, followed by standard operation
(5) Service plug

For connecting parameterising and service tools

Check voltage supply connection

a) (2) Off and (3) On
b) (2)
Blinking and (3) Blinking
Check the supply connections. Possibly \pm and \tilde{f} are swapped over.

Dimensions [mm]

Dimensional drawings

1
2
3

B

3

」.

LHQ24A..
LHQ24A..

